Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.456
Filtrar
1.
BMC Cancer ; 24(1): 369, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519889

RESUMO

CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.


Assuntos
Glioblastoma , Glioma , Humanos , Apoptose , Antígenos CD13/genética , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioma/genética
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473764

RESUMO

Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.


Assuntos
Aminopeptidases , Insulina , Animais , Insulina Regular Humana , Antígenos CD13 , Leucil Aminopeptidase , Piridinas
3.
Cell Mol Life Sci ; 81(1): 68, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289472

RESUMO

Aminopeptidase N/CD13, a membrane-bound enzyme upregulated in tumor vasculature and involved in angiogenesis, can be used as a receptor for the targeted delivery of drugs to tumors through ligand-directed targeting approaches. We describe a novel peptide ligand (VGCARRYCS, called "G4") that recognizes CD13 with high affinity and selectivity. Enzymological and computational studies showed that G4 is a competitive inhibitor that binds to the catalytic pocket of CD13 through its N-terminal region. Fusing the peptide C-terminus to tumor necrosis factor-alpha (TNF) or coupling it to a biotin/avidin complex causes loss of binding and inhibitory activity against different forms of CD13, including natural or recombinant ectoenzyme and a membrane form expressed by HL60 promyelocytic leukemia cells (likely due to steric hindrance), but not binding to a membrane form of CD13 expressed by endothelial cells (ECs). Furthermore, G4-TNF systemically administered to tumor-bearing mice exerted anticancer effects through a CD13-targeting mechanism, indicating the presence of a CD13 form in tumor vessels with an accessible binding site. Biochemical studies showed that most CD13 molecules expressed on the surface of ECs are catalytically inactive. Other functional assays showed that these molecules can promote endothelial cell adhesion to plates coated with G4-avidin complexes, suggesting that the endothelial form of CD13 can exert catalytically independent biological functions. In conclusion, ECs express a catalytically inactive form of CD13 characterized by an accessible conformation that can be selectively targeted by G4-protein conjugates. This form of CD13 may represent a specific target receptor for ligand-directed targeted delivery of therapeutics to tumors.


Assuntos
Antígenos CD13 , Células Endoteliais , Leucemia Promielocítica Aguda , Animais , Camundongos , Antígenos CD13/antagonistas & inibidores , Ligantes
4.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707657

RESUMO

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Assuntos
Dipeptidil Peptidase 4 , Sêmen , Cães , Masculino , Animais , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometria de Fluxo/veterinária
5.
Virus Res ; 340: 199303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145807

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus (CoV) that mainly causes acute diarrhea/vomiting, dehydration, and mortality in piglets, possessing economic losses and public health concerns. However, there are currently no proven effective antiviral agents against PDCoV. Cepharanthine (CEP) is a naturally occurring alkaloid used as a traditional remedy for radiation-induced symptoms, but its underlying mechanism of CEP against PDCoV has remained elusive. The aim of this study was to investigate the anti-PDCoV effects and mechanisms of CEP in LLC-PK1 cells. The results showed that the antiviral activity of CEP was based on direct action on cells, preventing the virus from attaching to host cells and virus replication. Importantly, Surface Plasmon Resonance (SPR) results showed that CEP has a moderate affinity to PDCoV receptor, porcine aminopeptidase N (pAPN) protein. AutoDock predicted that CEP can form hydrogen bonds with amino acid residues (R740, N783, and R790) in the binding regions of PDCoV and pAPN. In addition, RT-PCR results showed that CEP treatment could significantly reduce the transcription of ZBP1, cytokine (IL-1ß and IFN-α) and chemokine genes (CCL-2, CCL-4, CCL-5, CXCL-2, CXCL-8, and CXCL-10) induced by PDCoV. Western blot analysis revealed that CEP could inhibit viral replication by inducing autophagy. In conclusion, our results suggest that the anti-PDCoV activity of CEP is not only relies on competing the virus binding with pAPN, but also affects the proliferation of the virus in vitro by downregulating the excessive immune response caused by the virus and inducing autophagy. CEP emerges as a promising candidate for potential anti-PDCoV therapeutic development.


Assuntos
Benzodioxóis , Benzilisoquinolinas , Infecções por Coronavirus , Coronavirus , Deltacoronavirus , Doenças dos Suínos , Animais , Suínos , Coronavirus/genética , Antígenos CD13/metabolismo
6.
J Virol ; 98(1): e0123923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38099687

RESUMO

Coronaviruses (CoVs) pose a major threat to human and animal health worldwide, which complete viral replication by hijacking host factors. Identifying host factors essential for the viral life cycle can deepen our understanding of the mechanisms of virus-host interactions. Based on our previous genome-wide CRISPR screen of α-CoV transmissible gastroenteritis virus (TGEV), we identified the host factor dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), but not DYRK1B, as a critical factor in TGEV replication. Rescue assays and kinase inhibitor experiments revealed that the effect of DYRK1A on viral replication is independent of its kinase activity. Nuclear localization signal modification experiments showed that nuclear DYRK1A facilitated virus replication. Furthermore, DYRK1A knockout significantly downregulated the expression of the TGEV receptor aminopeptidase N (ANPEP) and inhibited viral entry. Notably, we also demonstrated that DYRK1A is essential for the early stage of TGEV replication. Transmission electron microscopy results indicated that DYRK1A contributes to the formation of double-membrane vesicles in a kinase-independent manner. Finally, we validated that DYRK1A is also a proviral factor for mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. In conclusion, our work demonstrated that DYRK1A is an essential host factor for the replication of multiple viruses, providing new insights into the mechanism of virus-host interactions and facilitating the development of new broad-spectrum antiviral drugs.IMPORTANCECoronaviruses, like other positive-sense RNA viruses, can remodel the host membrane to form double-membrane vesicles (DMVs) as their replication organelles. Currently, host factors involved in DMV formation are not well defined. In this study, we used transmissible gastroenteritis virus (TGEV) as a virus model to investigate the regulatory mechanism of dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) on coronavirus. Results showed that DYRK1A significantly inhibited TGEV replication in a kinase-independent manner. DYRK1A knockout (KO) can regulate the expression of receptor aminopeptidase N (ANPEP) and endocytic-related genes to inhibit virus entry. More importantly, our results revealed that DYRK1A KO notably inhibited the formation of DMV to regulate the virus replication. Further data proved that DYRK1A is also essential in the replication of mouse hepatitis virus, porcine deltacoronavirus, and porcine sapelovirus. Taken together, our findings demonstrated that DYRK1A is a conserved factor for positive-sense RNA viruses and provided new insights into its transcriptional regulation activity, revealing its potential as a candidate target for therapeutic design.


Assuntos
Infecções por Coronavirus , Coronavirus , 60608 , Animais , Humanos , Camundongos , Antígenos CD13/genética , Coronavirus/classificação , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Deltacoronavirus , Vírus da Hepatite Murina/fisiologia , Suínos , Vírus da Gastroenterite Transmissível/genética , Tirosina , Replicação Viral/fisiologia , 60608/metabolismo
7.
J Transl Med ; 21(1): 898, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082290

RESUMO

BACKGROUND: Early microbial exposure is associate with protective allergic asthma. We have previously demonstrated that Streptococcus pneumoniae aminopeptidase N (PepN), one of the pneumococcal components, inhibits ovalbumin (OVA) -induced airway inflammation in murine models of allergic asthma, but the underlying mechanism was incompletely determined. METHODS: BALB/c mice were pretreated with the PepN protein and exposed intranasally to HDM allergen. The anti-inflammatory mechanisms were investigated using depletion and adoptive transfer experiments as well as transcriptome analysis and isolated lung CD11chigh macrophages. RESULTS: We found pretreatment of mice with PepN promoted the proliferation of lung-resident F4/80+CD11chigh macrophages in situ but also mobilized bone marrow monocytes to infiltrate lung tissue that were then transformed into CD11high macrophages. PepN pre-programmed the macrophages during maturation to an anti-inflammatory phenotype by shaping the metabolic preference for oxidative phosphorylation (OXPHOS) and also inhibited the inflammatory response of macrophages by activating AMP-activated protein kinase. Furthermore, PepN treated macrophages also exhibited high-level costimulatory signaling molecules which directed the differentiation into Treg. CONCLUSION: Our results demonstrated that the expansion of CD11chigh macrophages in lungs and the OXPHOS metabolic bias of macrophages are associated with reduced allergic airway inflammation after PepN exposure, which paves the way for its application in preventing allergic asthma.


Assuntos
Asma , Pneumonia , Camundongos , Animais , Streptococcus pneumoniae/metabolismo , Antígenos CD13 , Citocinas/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Inflamação/prevenção & controle , Macrófagos/metabolismo , Anti-Inflamatórios , Fenótipo , Ovalbumina , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
8.
Biomolecules ; 13(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37892170

RESUMO

The ß2 integrin CD11b/CD18, also known as complement receptor 3 (CR3), and the moonlighting protein aminopeptidase N (CD13), are two myeloid immune receptors with overlapping activities: adhesion, migration, phagocytosis of opsonized particles, and respiratory burst induction. Given their common functions, shared physical location, and the fact that some receptors can activate a selection of integrins, we hypothesized that CD13 could induce CR3 activation through an inside-out signaling mechanism and possibly have an influence on its membrane expression. We revealed that crosslinking CD13 on the surface of human macrophages not only activates CR3 but also influences its membrane expression. Both phenomena are affected by inhibitors of Src, PLCγ, Syk, and actin polymerization. Additionally, after only 10 min at 37 °C, cells with crosslinked CD13 start secreting pro-inflammatory cytokines like interferons type 1 and 2, IL-12p70, and IL-17a. We integrated our data with a bioinformatic analysis to confirm the connection between these receptors and to suggest the signaling cascade linking them. Our findings expand the list of features of CD13 by adding the activation of a different receptor via inside-out signaling. This opens the possibility of studying the joint contribution of CD13 and CR3 in contexts where either receptor has a recognized role, such as the progression of some leukemias.


Assuntos
Antígenos CD13 , Antígenos CD18 , Integrinas , Humanos , Antígenos CD18/metabolismo , Antígeno de Macrófago 1/metabolismo , Fagocitose/fisiologia
9.
Cancer Sci ; 114(12): 4763-4769, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858605

RESUMO

The phosphorylated form of histone H2AX (γ-H2AX) serves as a commonly utilized biomarker for DNA damage. Based on our previous findings, which demonstrated the formation of γ-H2AX foci as a reliable biomarker for detecting bladder carcinogens in repeated dose 28-day study in rats, we hypothesized that γ-H2AX could also function as a biomarker for detecting hepatocarcinogens. However, we found that γ-H2AX foci formation was not effectively induced by hepatocarcinogens that did not stimulate hepatocyte proliferation. Therefore, we explored alternative biomarkers to detect chemical hepatocarcinogenicity and discovered increased expressions of epithelial cell adhesion molecule (EpCAM/CD326)- and aminopeptidase N (APN/CD13) in the hepatocytes of rats administered various hepatocarcinogens. Significant increases in EpCAM- and APN-positive hepatocytes were observed for eight and five of the 10 hepatocarcinogens, respectively. Notably, five and two of them, respectively, were negative for γ-H2AX foci. These results highlight the potential of EpCAM and APN as useful biomarkers in combination with γ-H2AX for the detection of chemical hepatocarcinogenicity.


Assuntos
Biomarcadores , Antígenos CD13 , Carcinógenos , Molécula de Adesão da Célula Epitelial , Fosfoproteínas , Animais , Ratos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Fosfoproteínas/metabolismo , Masculino , Carcinógenos/análise , Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores/análise
10.
J Virol ; 97(9): e0060123, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676001

RESUMO

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Assuntos
Antígenos CD13 , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Cães , Humanos , Coelhos , Antígenos CD13/metabolismo , Quirópteros/virologia , Coronavirus/fisiologia , Pneumonia , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686129

RESUMO

The primary objectives of this study were to assess the inhibitory effects of Allium ampeloprasum L. extract (AAE) and its derived organosulfur and polyphenolic compounds on the enzymatic activities of cGMP-specific PDE V (PDE5) and aminopeptidase N (APN). Additionally, the study aimed to investigate their potential as inhibitors against these two target enzymes through kinetic analyses and molecular docking studies. The in vitro enzyme assays demonstrated that both AAE and its derived compounds significantly decreased the activity of PDE5 and APN. Further analyses involving kinetics and molecular docking provided insights into the specific inhibitor types of AAE and its derived compounds along with the proposed molecular docking models illustrating the interactions between the ligands (the compounds) and the enzymes (PDE5 and APN). In particular, AAE-derived polyphenolic compounds showed relatively stable binding affinity (-7.2 to -8.3 kcal/mol) on PDE5 and APN. Our findings proved the potential as an inhibitor against PDE5 and APN of AAE and AAE-derived organosulfur and polyphenolic compounds as well as a functional material for erectile dysfunction improvement.


Assuntos
Allium , Antígenos CD13 , Simulação de Acoplamento Molecular , Cinética , Modelos Moleculares
12.
PLoS One ; 18(9): e0291546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37708134

RESUMO

The white potato worm Premnotrypes vorax (Hustache) (Coleoptera: Curculionidae) is one of the most destructive insect pests of potato crops in South America. Like many coleopteran insects, P. vorax shows low susceptibility to Cry insecticidal proteins produced by the bacterium Bacillus thuringiensis (Bt). However, the presence of Cry toxin receptors in the midgut of this this insect has never been studied. The main Cry-binding proteins described in other insect species are cadherin (CAD), aminopeptidase N (APN), alkaline phosphatase (ALP) and ATP-binding cassette (ABC) transporters. In this study, we analyzed and validated a de novo assembled transcriptome of Illumina sequencing data to identify and to characterize homologs of Cry toxin receptors. We identified the protein sequences in P. vorax that show high identity with their orthologous sequences of the Cry toxin binding proteins in other coleopteran larvae such as APN, ALP, CAD and ABC transporter. This study provides preliminary identification of putative receptor genes of Cry proteins that would be useful for future studies involving biocontrol of this important potato crop pest.


Assuntos
Besouros , Gorgulhos , Animais , Gorgulhos/genética , Transcriptoma , Proteínas de Insetos/genética , Transportadores de Cassetes de Ligação de ATP , Fosfatase Alcalina , Antígenos CD13/genética , Caderinas , Corantes
13.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628856

RESUMO

Angiogenesis plays a crucial role in tumour progression and metastatic spread; therefore, the development of specific vectors targeting angiogenesis has attracted the attention of several researchers. Since angiogenesis-associated aminopeptidase N (APN/CD13) is highly expressed on the surface of activated endothelial cells of new blood vessels and a wide range of tumour cells, it holds great promise for imaging and therapy in the field of cancer medicine. The selective binding capability of asparagine-glycine-arginine (NGR) motif containing molecules to APN/CD13 makes radiolabelled NGR peptides promising radiopharmaceuticals for the non-invasive, real-time imaging of APN/CD13 overexpressing malignancies at the molecular level. Preclinical small animal model systems are major keystones for the evaluation of the in vivo imaging behaviour of radiolabelled NGR derivatives. Based on existing literature data, several positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radioisotopes have been applied so far for the labelling of tumour vasculature homing NGR sequences such as Gallium-68 (68Ga), Copper-64 (64Cu), Technetium-99m (99mTc), Lutetium-177 (177Lu), Rhenium-188 (188Re), or Bismuth-213 (213Bi). Herein, a comprehensive overview is provided of the recent preclinical experiences with radiolabelled imaging probes targeting angiogenesis.


Assuntos
Células Endoteliais , Compostos Radiofarmacêuticos , Animais , Antígenos CD13 , Fenômenos Fisiológicos Cardiovasculares , Modelos Animais de Doenças
14.
Eur J Med Chem ; 260: 115752, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647727

RESUMO

Aminopeptidase N (APN/CD13) plays a role in tumors progression, but its inhibitor lacks cytotoxicity and is used as an adjuvant drug in cancer treatment. Histone deacetylases (HDACs) are a type of epigenetic targets, and HDAC inhibitors are cytotoxic and exhibit synergistic effects with other anticancer agents. Herein, a novel series of HDAC/CD13 dual inhibitors were rationally designed and synthesized to combine the anti-metastasis and anti-invasion of CD13 inhibitor with the cytotoxic of HDAC inhibitor. The representative compound 12 exhibited more potent inhibitory activity against human CD13, HDAC1-3, and antiproliferative activity than positive controls bestatin and SAHA. Compound 12 effectively induced apoptosis in MV4-11 cells, while arresting A549 cells in G2/M phase. Moreover, 12 exhibited significantly better anti-metastasis and anti-invasion effects than mono-inhibitors 32 and 38, indicating that it is a promising anti-cancer agent for further investigation.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Humanos , Células A549 , Apoptose , Divisão Celular , Epigenômica , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Antígenos CD13/química , Antígenos CD13/imunologia
15.
Front Immunol ; 14: 1192715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457692

RESUMO

Oral subunit vaccines are an interesting alternative strategy to traditional live-attenuated or inactivated vaccines for conferring protection against gut pathogens. Despite being safer and more cost-effective, the development of oral subunit vaccines remains challenging due to barriers imposed by the gastrointestinal tract, such as digestive enzymes, a tolerogenic immune environment and the inability of larger proteins to cross the epithelial barrier. Recent advances have focused on overcoming these barriers by using potent mucosal adjuvants or pH-responsive delivery vehicles to protect antigens from degradation and promote their release in the intestinal lumen. A promising approach to allow vaccine antigens to pass the epithelial barrier is by their targeting towards aminopeptidase N (APN; CD13), an abundant membrane protein present on small intestinal enterocytes. APN is a peptidase involved in digestion, but also a receptor for several enteric pathogens. In addition, upon antibody-mediated crosslinking, APN facilitated the transport of antibody-antigen fusion constructs across the gut epithelium. This epithelial transport resulted in antigen-specific immune responses. Here, we present evidence that oral administration of APN-specific antibody-antigen fusion constructs comprising the porcine IgA Fc-domain and the FedF tipadhesin of F18-fimbriated E. coli elicited both mucosal and systemic immune responses and provided at least partial protection to piglets against a subsequent challenge infection with an F18-fimbriated STEC strain. Altogether, these findings will contribute to the further development of new oral subunit vaccines and provide a first proof-of-concept for the protective efficacy of APN-targeted vaccine antigens.


Assuntos
Escherichia coli , Vacinas , Animais , Suínos , Antígenos CD13 , Antígenos , Mucosa
16.
ACS Sens ; 8(7): 2791-2798, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37405930

RESUMO

Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.


Assuntos
Antígenos CD13 , Humanos , Animais , Camundongos , Antígenos CD13/metabolismo , Fluorescência , Membrana Celular/metabolismo , Transporte Biológico
17.
Bull Entomol Res ; 113(5): 615-625, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37466033

RESUMO

Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.


Assuntos
Bacillus thuringiensis , Besouros , Gorgulhos , Humanos , Animais , Besouros/metabolismo , Gorgulhos/metabolismo , Antígenos CD13/metabolismo , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Larva/metabolismo , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/toxicidade , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade
18.
Brain Dev ; 45(9): 479-486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37263884

RESUMO

BACKGROUND: Pericytes play a role in the maintenance of the blood-brain barrier and neuroinflammation, attracting attention as to whether they are also involved in the pathogenesis of epilepsy.This study aimed to explore the relationship between West syndrome and pericytes. METHODS: Eighteen Japanese pediatric West syndrome patients and nine controls aged 2 years or younger were retrospectively enrolled in this study. We assessed theserumlevels of pericyte markers, serum PDGFRß (platelet-derived growth factor receptorß),CD13 (aminopeptidase N), and 27 cytokines in 17 pediatric patients with West syndrome and the control group. RESULTS: Patients with West syndrome exhibited significantly increased CD13 and decreased PDGFRß levels, compared with controls but not serum cytokine levels. These values did not differ significantly between symptomatic and idiopathic West syndrome. CONCLUSION: Pericytes might be implicated in the pathogenesis of West syndrome.


Assuntos
Pericitos , Espasmos Infantis , Criança , Humanos , Pericitos/metabolismo , Pericitos/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estudos Retrospectivos , Espasmos Infantis/metabolismo , Antígenos CD13
19.
Mar Drugs ; 21(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37233473

RESUMO

Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.


Assuntos
Aminopeptidases , Leucil Aminopeptidase , Humanos , Aminopeptidases/química , Aminopeptidases/metabolismo , Leucil Aminopeptidase/química , Peptídeos/química , Antígenos CD13
20.
Chemistry ; 29(51): e202300655, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227809

RESUMO

Bioluminogenic probes emerged as powerful tools for imaging and analysis of various bioanalyses, but traditional approaches would be limited to the low sensitivity during determine the low activity of protease in clinical specimens. Herein, we proposed a caged luciferase inhibitor-based bioluminescence-switching strategy (CLIBS) by using a cleavable luciferase inhibitor to modulate the activity of luciferase reporter to amplify the detective signals, which led to the enhancement of detection sensitivity, and enabled the determination of circulating Aminopeptidase N (APN) activity in thousands of times diluted serum. By applying the CLIBS to serum samples in non-small cell lung cancer (NSCLC) patients from two clinical cohorts, we revealed that, for the first time, higher circulating APN activities but not its concentration, were associated with more NSCLC metastasis or higher metastasis stages by subsequent clinical analysis, and can serve as an independent factor for forecasting NSCLC patients' risk of metastasis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Antígenos CD13 , Luciferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...